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a /3-trimethylsilyl in 17, however, did enhance the ease of me-
talation, as well as the kinetic stability of the a-lithioepoxide, 
even though metalation occurred a to phenyl. Thus, /3-tri-
methylsilylstyrene oxide (19) underwent metalation with n-
butyllithium at —78° to yield 20, which upon treatment with 
D2O provided a high yield of configurationally unchanged 18 
completely a-deuterated (21). 

These metalation studies are being extended to other sil-
ylepoxides (1, R = R3Si and Ri,R2 = H, alkyl) and ordinary 
epoxides (1, R1Ri1R2 = H or alkyl) as a means of developing 
practical nucleophilic epoxide synthons.7 It should be noted 
that previous work with epoxyalkylsilanes has already estab­
lished such systems as attractive precursors to silicon-free 
carbonyl, olefinic, or hydroxylic derivatives.8 Further devel­
opments on such silylepoxide chemistry are receiving our 
earnest attention and some of these will be published short-
iy.1 
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Tetraethyldioxetane and 
3,4-Dimethyl-3,4-di-n-butyl-l,2-dioxetane. High Ratio 
of Triplet to Singlet Excited Products from the 
Thermolysis of Both Dioxetanes 

Sir: 

The thermolysis of dioxetanes is now an established 
source of excited carbonyls.1 It is likely that the effect of 
structural changes will help elucidate the still-debated 
mechanism of this reaction. For example, tetramethoxydi-
oxetane (1) was found to be considerably more stable than 
tetramethyldioxetane (2) and to give fewer excited prod­
ucts.2 To understand this particular substituent effect, 
tetraethyldioxetane (3) was now synthesized, in which the 
ethyl groups can be regarded as models, from the steric 
viewpoint, for the methoxy groups of 1. 3 is interesting also 
in the context of Darling and Foote's unexpected results 
with 3,4-dimethyl-3,4-di-«-butyldioxetane (4).3 These au­
thors reported that 4 generates little excited ketone, pre­
dominantly in the singlet state (3<£ = 0.035, l<p = 0.05), 
basing their determination of excitation yields on type II 
processes (elimination and cyclization) from excited 2-hex-
anone. Since 3 was found to give a high yield of triplet 
products and few excited singlets, like 2, 4 was reinvestigat­
ed by the same luminescence techniques4 and found, in fact, 
to show the same preference for triplet products, like all 
isolated dioxetanes for which this information is now avail­
able.10 In retrospect, it would be difficult to rationalize how 
the length of the butyl groups could cause drastic differ­
ences between the excitation yields of 3 and 4. 
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VC ^ 
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2 
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The thermolyses of dioxetanes 3 and 45 produce 3-penta-
none and 2-hexanone as only products detected by NMR 
and are accompanied, in aerated benzene or xylenes, by 
weak chemiluminescences, which are strongly enhanced by 
the addition of 9,10-dibromoanthracene (DBA) or 9,10-di-
phenylanthracene (DPA). The decay of chemiluminescence 
follows a strict first-order course independent of fluorescer. 

Journal of the American Chemical Society j 98:15 j July 21, 1976 



4649 

Table I 

Rates at 83° £ a
a £a* V V 

Dioxetanes (s-1) Log A" (kcal/mol) (kcal/mol) (Af/molecule) (Ac/molecule) 

3 2.2 XlO-4 14.8 30.0 ± 1 31.0 ± 1 0.002J 0.5 ±0.1 
4 1.0 XlO-3 12.5 25.2 ± 1 26.0 ± 1 0.0008'' 0.25.±0.05f 

" From Arrhenius plots of chemiluminescence decay rates, in xylenes, with or without various fluoresces: DPA, DBA, perylene, or ru-
brene. Initial dioxetane concentration range: 1O-2 to 10 -5 M. * From temperature drop experiments with DPA or perylene as fluorescer, in 
xylenes. c In xylenes, estimated errors on l<j> are 50%. d 3 concentration = 3.0 X 10 -4 M, temperature 69.0°. € 4 concentration = 1.1 X 
IQ-3 M, temperature 46.8°. 

The activation energies calculated from Arrhenius plots of 
the rates of chemiluminescence decay are in excellent 
agreement with the values of Ea obtained by the tempera­
ture-drop method in the presence of DPA (Table I). The ac­
tivation parameters for 4 agree with the literature values.6 

Both 1 and 3 are more stable than 2, but for different 
reasons, since in the case of 1 entropy factors seem impor­
tant whereas energy limitations play the major role in the 
case of 3. The results with 3 show that simple geometrical 
considerations alone cannot explain the greater stability of 
1 compared to 2. Because of the methoxy groups, the ther­
molysis of 1 is considerably more exoergic2 than that of 2, 
3, or 4. On the other hand, the levels of the excited states of 
methyl carbonate may be appreciably higher than that of 
the ketones of the other dioxetanes. How these factors and 
the electronic configuration of the excited carbonyl affect 
the activation parameters is unclear. 

The yields of excited singlet {l(j>) and triplet (30) ketones 
from these two dioxetanes were obtained by the DPA/DBA 
method, as described earlier4 (Table I). Dienes (cis-1,3-
pentadiene or 2,5-dimethyl-2,4-hexadiene) effectively 
quench the emission from DBA, while having very little ef­
fect on the luminescence enhanced by DPA. Stern-Volmer 
plots of diene quenching of the chemiluminescence with 
DBA gave the following values for kqrj: 180 M - 1 for 3, 
250 M - ' for 4, in xylenes as solvent. These values are con­
sistent with the values of / C E T T 7 obtained from the ratio in­
tercept/slope of the double reciprocal plots of chemilumi­
nescence intensity vs. DBA concentration (&ET and kq 

should both be nearly diffusion-controlled). Regarding 4, 
one point deserves further discussion. The values of kqTj 
from this work in xylenes are nearly an order of magnitude 
larger than the triplet quenching slope of 30 M - 1 reported 
by Darling and Foote in decalin.3 In this solvent,8 by the 
chemiluminescence method, kqTj and &ETTT are ~50 M - 1 

and the triplet yield obtained is lower also (30 = 0.09, still 
much larger than '<£ = 0.0006);9 the thermolysis rates are 
unchanged. 

The properties of dioxetane 4 resemble closely those of 2. 
The divergence between the results of Darling and Foote 
and this work may have one of several origins.10 It may be 
tempting to speculate that the luminescence method used 
here "counts" relaxed triplet ketones, whereas the photoe-
limination and cyclization reactions could conceivably orig­
inate from vibrationally excited triplet 2-hexanone. There­
fore those excited triplets which did not chance to undergo 
type II processes may have been missed in the earlier work. 
This, however, would not account for the discrepancy in the 
singlet yield, which is much lower than was reported. An­
other related possibility is that intersystem-crossing ef­
ficiencies and quantum yields of type II processes are dif­
ferent when the excited ketones are generated photochemi-
cally or from dioxetane thermolysis. An alternative expla­
nation, difficult to discard at this point, is that the analyti­
cal accuracy of product determination was not as high as 
believed by the previous authors.1 ' In any case, dioxetanes 3 
and 4 undoubtedly conform to the rule favoring triplet 

products from "stable" dioxetanes yielding n,7r* excited ke­
tones. 
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